NI and AT&T Develop Solution to Measure mmWave Spectrum in Milliseconds

5G mmWave

NI and AT&T are collaborated to develop one of the world’s fastest and most accurate tools for 5G Millimeter Wave (mmWave) channel characterization.

mmWave frequencies will play a big role in the future of 5G. They have already been earmarked by the FCC, 3GPP and other standardization bodies for 5G mobile networks. Channel measurements capture how wireless signals are affected in a given environment. For instance, channel measurements can show how signals reflect off of, or are blocked by, objects, such as trees, buildings, cars and even people.

Wireless channel characterization is very important for wireless researchers defining 5G technologies as it will help them lay the foundation for the architecture and design of these new wireless networks. AT&T and NI believe this work will likely play a role in AT&T’s future 5G deployment, through the creation of accurate models that help map out the details of where AT&T places its network equipment to provide customers with the best possible mobile experience.

Nicknamed internally within AT&T as the “Porcupine,” the channel sounder provides real-time channel parameter measurement and monitoring capability. The AT&T channel sounder uses an architecture based on NI's mmWave Transceiver System, and is the first of its kind to provide real-time channel parameter measurement and monitoring capability. It allows angle-of-arrival (AoA) measurements to be completed (using pan-tilt units) in less than 150 milliseconds and displays the results in real-time. This type of measurement takes up to 15 minutes or more using current approaches.

The channel sounder uniquely captures channel measurements where all the data is acquired and processed in real-time. Other channel sounding approaches capture raw data and post process to characterize the channel while only giving one-measurement every 15 minutes. The “Porcupine” on the other hand can provide about 6,000 measurements in that time. It’s like capturing 15-minutes of action with a video instead of a still photo. A video tells the whole story, while a photo just shows a moment.

The capability of real-time measurement eliminates the need to repeat experiments or to adjust the equipment to take multiple measurements from one location. Since parameter extraction is done in real-time, the integrity of collected data can also be evaluated in real-time. Thus inaccurate data can be replaced immediately with a new set of measurements at the time of evaluation. Using other approaches, an entire evaluation day could potentially be lost if the collected data is post-processed.

The speed and accuracy of this mmWave channel sounder makes it uniquely capable of making fast measurements of a channel. Thus, for example, the “Porcupine” allows the measurement of 5G mmWave frequencies via drive testing. This capability has previously remained out of reach for other mmWave channel sounders.

As the 5G ecosystem looks at new use cases for 5G such as assisted driving, connected car, self-driving cars and more, the ability to study and model vehicular channels will become ever more critical.