Trends in automotive safety are pushing radar systems to higher levels of accuracy and reliable target identification for blind spot detection and collision prevention assistance. Consequentially, engineers need to better understand how mounting brackets, fascia, paint color, and bumper assemblies affect the far field radiation patterns of 24 GHz and 77 GHz automotive radar systems. Long used for lower frequency (and longer wavelength) antenna-on-vehicle simulations, including vehicle-to-vehicle communication, electromagnetic (EM) simulation can now handle high fidelity analysis beyond the ideal 24 GHz and 77 GHz sensor itself, to include the antenna package and the automobile body features surrounding the device.
In this paper, a 24 GHz sensor is used to discuss differences between the simulation of a stand-alone sensor and one that is mounted in a vehicle. Efficient finite-difference time-domain (FDTD) EM analysis, combined with dramatic computation acceleration via CUDA-enabled graphics processing units (GPUs), make Remcom’s XFdtd®, a fully arbitrary 3D EM simulation software tool, an optimal choice for the simulation of an antenna-in-system design with this level of complexity.
Stay updated with the RF & Microwave Industry.
By signing up for our newsletter you agree to our Terms of Service and acknowledge receipt of our Privacy Policy.
By creating an account with us you agree to our Terms of Service and acknowledge receipt of our Privacy Policy.
Content submitted here will be sent to our editorial team who will review and consider it for publication on the website. you will be emailed if this content is published on everything RF.
Please click on the button in the email to get access to this section.