Fill one form and get quotes for cable assemblies from multiple manufacturers
The development of 5G technologies aimed at increasing data rate of wireless communication networks by a factor of 100 imposes stringent specifications (large bandwidth, high gain, small size and temperature independent performance) on the design of the radio frequency (RF) electronics. Various front-end antenna solutions relying on patch radiating structures have been proposed for millimeter-wave applications. Said antennas are characterized by small size, low weight, and low cost and can be easily integrated on chip. However, because of losses in conductors as well as dielectric substrate materials, these antennas suffer from very low radiation efficiency (< 10 %), low gain (< 0 dBi), and narrowband behavior. The class of Dielectric Resonator Antennas (DRAs) is a promising candidate to replace more traditional and conventional antennas especially at millimeterwave frequencies and beyond. This is mainly attributed to the fact that DRAs do not suffer from conduction losses and are characterized by high radiation efficiency when excited properly. This whitepaper discusses the use of Dielectric Resonator Antennas for 5G Applications.
Create an account on everything RF to get a range of benefits.
By creating an account with us you agree to our Terms of Service and acknowledge receipt of our Privacy Policy.
Login to everything RF to download datasheets, white papers and more content.
Fill the form to Download the Media Kit
Content submitted here will be sent to our editorial team who will review and consider it for publication on the website. you will be emailed if this content is published on everything RF.
Please click on the button in the email to get access to this section.